A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin
نویسندگان
چکیده
Degradation of lignin constitutes a key step in processing biomass to become useful monomers but it remains challenging. Compared to fungi, bacteria are much less characterized with respect to their lignin metabolism, although it is reported that many soil bacteria, especially actinomycetes, attack and solubilize lignin. In this work, we screened 43 filamentous actinomycetes by assaying their activity on chemically different substrates including a soluble and semi-degraded lignin derivative (known as alkali lignin or Kraft lignin), and we discovered a novel and valuable peroxidase activity produced by the recently classified actinomycete Nonomuraea gerenzanensis. Compared to known fungal manganese and versatile peroxidases, the stability of N. gerenzanensis peroxidase activity at alkaline pHs and its thermostability are significantly higher. From a kinetic point of view, N. gerenzanensis peroxidase activity shows a Km for H2O2 similar to that of Phanerochaete chrysosporium and Bjerkandera enzymes and a lower affinity for Mn2+, whereas it differs from the six Pleurotus ostreatus manganese peroxidase isoenzymes described in the literature. Additionally, N. gerenzanensis peroxidase shows a remarkable dye-decolorizing activity that expands its substrate range and paves the way for an industrial use of this enzyme. These results confirm that by exploring new bacterial diversity, we may be able to discover and exploit alternative biological tools putatively involved in lignin modification and degradation.
منابع مشابه
Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques
White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...
متن کاملNonomuraea fuscirosea sp. nov., an actinomycete isolated from the rhizosphere soil of rehmannia (Rehmannia glutinosa Libosch).
A novel actinomycete, designated strain NEAU-dht8(T), was isolated from the rhizosphere soil of rehmannia (Rehmannia glutinosa Libosch) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Nonomuraea. The G+C content of the DNA was 68.47 mol%. On the basis of 16S rRNA gene sequence similarity studies,...
متن کاملSubstrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers
Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of l...
متن کاملUptake, Transport and Chelation of Cu and Zn at Toxic Levels in Tolerant and Sensitive Species from North West of Iran
From flora of North West of Iran, four contrasting species in term of frequency and coverage on heavy metal rich soils were selected to study physiological mechanisms for different tolerance of Zn and Cu toxicity in a hydroponic culture experiment. For study of Zn toxicity, Dactylis glomerata and Secale monatum and for Cu, Cichorium intybus and Astragalus echinops were selected. A clear differe...
متن کاملThe complete 12 Mb genome and transcriptome of Nonomuraea gerenzanensis with new insights into its duplicated “magic” RNA polymerase
In contrast to the widely accepted consensus of the existence of a single RNA polymerase in bacteria, several actinomycetes have been recently shown to possess two forms of RNA polymerases due the to co-existence of two rpoB paralogs in their genome. However, the biological significance of the rpoB duplication is obscure. In this study we have determined the genome sequence of the lipoglycopept...
متن کامل